Acid-Catalyzed Rearrangements of the Piny1 System'

Ryonosuke Muneyuki,[†] Yohko Yoshimura, Kazuo Tori,[†] Yoshihiro Terui, and James N. Shoolery*s

Shionogi Research Laboratories, Shionogi & Company, Ltd., Fukushima-ku, Osaka 553, Japan, and Varian Instrument Group, Palo Alto, California 94303

Received September 2, 1986

The additions and rearrangements of α -pinene (1) and apopinene (2) in deuteriated acids have been studied. The results obtained for **1** suggest that one of the reaction paths involves the tertiary cation intermediate **3a,** but it has been difficult to define clearly the stereoelectronic relation between additions and rearrangements in this system. However, in the case of deuterium addition to **2,** the stereospecific deuterium location at C-6-endo in the product **7,** the considerable preference for sterically hindered exc-side addition, and the rate enhancement of 48 times for CF,COOH addition to **2** compared with cyclohexene are interpreted to mean that the additions are assisted by concerted c-6-C-1 or C-7-C-1 bond migration corresponding to endo- and exo-side addition, respectively. Furthermore in P-fenchoisocamphorol **(9)** obtained in CF3COOD addition to **2,** the fraction of deuterium at C-1 (0.40) exceeds that at C-2-endo (0.36) **as** shown in the 2H NMR spectrum. The same result is observed in **9** from model compounds **17** and **18. These** facta are interpreted as resulting either from an equilibrium between the cation intermediates I and 11, in which **I1** is favored due to the secondary a-deuterium isotope effect on I, or from an isotopic perturbation of resonance in a bridged structure, which favors product formation with deuterium at C-1.

Electrophilic additions of protonic acids to α -pinene **(1)** have been intensively investigated due to the chemical interest in the complexity of the reaction² and also due to the industrial importance of the rearranged products.^{2p} In general, protonation of α -pinene initiates rearrangements to give three types of products: (i) camphane derivatives from cation **4** formed by C-6-C-1 migration in 1, (ii) fenchane derivatives from cation **5** formed by C-7-C-1 migration in **l,** and (iii) monocyclic p-menthane derivatives from cation **6** formed by C-6-C-1 fission in **1** (eq 1).

However, the lack of information about the initial protonation, which is a key step relating to either subsequent or simultaneous rearrangements, makes the understanding of factors controlling the reaction more difficult. This is typically shown in the variety of structures proposed for the first formed cation intermediates, which have been depicted as taking either the form of $3a$, 2b,c a pair of forms 3b and 3c,^{2f,g} or in some cases an equilibrium between 3b and $3c^{2j,k}$ (eq 1).

From the structural point of view, α -pinene and apopinene **(2)** have a Y-shaped structure with equivalent steric requirements³ in both the exo and endo sides, except for the 6,6-dimethyl substituents. This distinctive structural character is advantageous for the study of addition mechanisms of bridged bicyclic systems⁴ due to the freedom from considerations of torsional effects,⁵ nonequivalent orbital extension,⁶ and staggering effects.⁷ The first object of this study is to clarify whether or not stereoelectronic controls are observed during additions and rearrangements in this system. Protonation assisted by concerted rearrangements requires proper stereoelectronic orientation, but this is not the case for assistance by strain relief. The second object is to determine the pathways

(1) A part of this work was presented at the 7th IUPAC Conference on Physical Organic Chemistry at Auckland in 1984. The names used written below: α -pinene, 2,6,6-trimethylbicyclo[3.1.1]hept-2-ene; β -pin-ene, 6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane; camphane, 1,7,7trimethylbicyclo[2.2.1]heptane; fenchane, 1,3,3-trimethylbicyclo[2.2.1]heptane; p-menthane, 1-methyl-4-(1-methylethyl)-cyclohexane; apopinene, **6,6-dimethylbicyclo[3.l.l]hept-2-ene;** a-fenchol, 1,3,3-trimethyl-[2.2.1]heptan-2-exo-ol; α-terpinenylacetate, α,α,4-trimethyl-3-cyclo-
hexene-1-methylacetate; limonene, 1-methyl-4-(1-methylethenyl)cyclohexene; α-nopinol, 6,6-dimethylbicyclo[3.1.1]heptan-2-exo-ol; β-nopinol, **6,6-dimethylbicyclo[3.l.l]heptan-2-endo-01;** nopinone, 6,6-dimethyl**bicyclo[3.l.l]heptan-2-one;** isonopinone, **6,6-dimethylbicyclo[3.1.1]** heptan-3-one; 8-fenchoisocamphorol, **5,5-dimethylbicyclo[2.2.l]heptan-2** exo-ol; camphenilone, 3,3-dimethylbicyclo[2.2.1]heptan-2-one; apocyclene, **3,3-dimethyltricycl0[2.2.1.O~~~]heptane;** endo-camphenilol, 3,3-dimethyl**bicyclo[2.2.l]heptan-2-endo-ol;** exo-camphenilol, 3,3-dimethylbicyclo- [2.2.l]heptan-2-exo-ol; @-fenchocamphorone, **5,5-dimethylbicyclo[2.2.1]** heptan-Zone; camphene, **2,2-dimethyl-3-methylenebicyclo[2.2.1]** heptane; a-santenol, **l,anti-7-dimethylbicyclo[2.2.l]heptan-2-exo-ol.**

(2) (a) Simonsen, J. L. The Terpenes, 2nd ed.; University: Cambridge, 1949; Vol. 2. (b) Kharash, M. S.; Reynolds, W. B. *J.* Org. Chem. 1944, 9,148-154. (c) Mosher, W A. J. Am. Chem. *SOC.* 1947,69,2139-2141. (d) Ritter, J. J.; Ginsburg, D. Ibid. 1950, 72, 2381-2384. (e) Huckel, W.; Gelchsheimer, E. *Justus Leibigs Ann. Chem.* 1959, 625, 12–30. (f) Berson, J. A. *Tetrahedron Lett.* 1960, 17–20. (g) Valkanas, G.; Iconomou, N. Helv. Chim. Acta. 1963, 46, 1089–1096. (h) Berson, J. A. *Molecular Rear*rangement; de Mayo, P., Ed.; Interscience: New York, 1963; Part 1, p
183. (i) Banthorpe, D. V.; Whittaker, D. *Chem. Reu.* 1966, 66, 643–656. (j) Wiliams, C. M.; Whittaker, D. J. Chem. *SOC.* E 1971, 668-672. **(k)** Wiliams, C. M.; Whittarker, D. Ibid. 1971,672-677. (1) Tori, K.; Yoshimura, Y.; Muneyuki, R. Tetrahedron Lett. 1971, 333-336. (m) Indyk, H.; Whittaker, D. *J.* Chem. *Soc.,* Perkin Trans. 2 1974, 646-650. (n) Valkanaa, G. N. J. Org. Chem. 1976,41, 1179-1183. *(0)* Muneyuki, R.; Yoshimura, Y.; Tori, K. Chem. Lett., Chem. *SOC.* Jpn. 1979,49-52. **(p)** Chemistry of Carbon Compounds, 2nd ed.; Rodd, E. H., Ed.; Elsevier:

Am. Chem. 1969; Part C, p 171. (q) Burrows, W. D.; Eastman, R. H. J.
Am. Chem. Soc. 1959, 81, 245-246.
(3) (a) Holden, C. M.; Whittaker, D. Org. Magn. Reson. 1975, 7,
125-127. (b) Abraham, R. J.; Cooper, M. A.; Salmon, J

(4) (a) Berson, J. A. Molecular Rearrangement; de Mayo, P., Ed.; Interscience: New York, 1963; Part I, Chapter 3 and references cited therein. (b) Cristol, *S.* J.; Gaston, L. K.; Johnson, D. W. Tetrahedron Lett. 1963,185-189. (c) Kwart, H.; Nyoe, J. L. J. Am. Chem. SOC. 1964, 86,2601-2606. (d) Traylor, T. G. Acc. Chem. Res. 1969,2,152-160. (e) Brown, H. C.; Liu, K.-T. J. *Am. Chem. Soc.* 1975, 97, 600–610. (f) Brown,
H. C.; Liu, K.-T. *Ibid.* 1975, 97, 2469–2476. (g) Chwang, W. K.; Nowlan,
V. J.; Tidwell, T. T. *Ibid.* 1977, 99, 7233–7238. (h) Huisgen, R.; P. H. J.; Mingin, M.; Allinger, N. L. *Ibid*. 1980, *102*, 3951–3953. (i)
Nordlander, J. E.; Haky, J. E.; Landino, J. P. *Ibid*. 1980, *102*, 7487–7493.
(j) Rondan, N. G.; Paddon-Row, M. N.; Caramella, P.; Houk, K. N. *I* 1981, *103,* 2436-2438, 2438-2440. (k) Allen, A. D.; Tidwell, T. T. Ibid. 1982, 104, 3145-3149.

(5) Schleyer, P. v. R. J. Am. Chem. Soc. 1967, 89, 701-703.

^{&#}x27;Present address: S. T. Chemical Co., Ltd., 4-10, Shimoochiai 1-Chome, Shinjuku-ku, Tokyo 161, Japan.

Deceased.

^fVarian Instrument Group.

Table I. Deuterium Contents" in Products from a-Pinene (1)

 a Determined by integrated signal-intensity of Eu(dpm)₃-shifted 30.710-MHz ²H NMR spectra. The largest value obtained from ²H NMR spectra in each product was made equal to that obtained from ¹H NMR spectra on a Varian HA-100.²⁰ The accuracy for the number of ²H atoms at each position is 0.05. B: in AcOD-B₂O₃ at 130 °C for 24 h. C: in AcOD at 130 °C for 24 h. ^bX, n, s, and a denote exo, endo, syn, and anti, respectively. 'Total values at 5x, 5n, and 6x. d'Total values at 8-Me and 9-Me.

Scheme I. Pathways to Intermediates from 2 and 16

involving capture of cationic intermediates after initial protonation. For these objectives, as described below, α -pinene was found to be an unsuitable substrate while apopinene satisfactorily met the requirements by giving a secondary carbocation demanding more assistance for its formation than the tertiary ion in the case of α -pinene. In addition, the structures I and 11, which are either canonical resonance structures of a bridged ion, R, or rapidly interconverting cation intermediates (Scheme I) formed by CF,COOD addition to **2,** are identical except for the deuterium at C-2 in I and at C-1 in 11. This gives the

advantage of using a single deuterium and racemic precursors in the elucidation of the structures of the cation intermediates.

Our previous report²⁰ on the deuterium distribution in products obtained in the CH₃COOD addition to α -pinene had the drawback of low accuracy in the deuterium analysis, which attempted to circumvent the inevitable inaccuracy in measuring the decrease of the integrated peak area in 'H NMR spectral analysis. In the current

study, we present interesting results obtained by 2H NMR analysis of deuterium distributions in the products from deuteriated acid addition to **1,2,** and related model compounds **(16-18)** and also some kinetic data for addition reactions, all of which are interpreted by the concept of anchimeric assistance^{8,9} by a migrating bond in the transition state of the initial rate-determining protonation.

These results also indicate the possibility of either the rapidly interconverting intermediates I and I1 or the bridged intermediate R^{10} for the free cation intermediates before solvent capture.

Results

Deuteriated Acetic Acid Addition to α -Pinene (1). Compound 1 was heated in AcOD (15 molar equiv of AcOD and 1 molar equiv of B_2O_3 ^{20,11} at 130 °C for 24 h, procedure B. Gas chromatographic (GC) analysis of the products obtained after hydrolysis of the resulting acetates showed the deuteriated alcohols borneol (4a), isoborneol (4b), α -fenchol (5a), α -isofenchol (5b), and a mixture of olefinic hydrocarbons in the ratio of 20%, 25%, 20%, lo%, and 25%, respectively (eq 2). Compound 5b was not

$$
1 \longrightarrow \bigoplus_{4-a}^{n} + \bigoplus_{4-b}^{n} \bigoplus_{5-a}^{n} + \bigoplus_{5-b}^{n} \bigoplus_{5-b}^{0 \text{left} \atop \text{hydrocarbons}} (2)
$$

found in the products obtained in AcOD (15 molar equiv) at 130 "C for 24 h, procedure C. Corresponding AcOH-**B203** addition to 1 gave nondeuteriated alcohols 4a, 4b, **5a,** and 5b, which were identified by spectral comparison with authentic samples.¹² Control experiments showed

(11) Imoto, M. *Kogyo Kagaku Zasshi* 1938,41, 392.

⁽⁶⁾ Inaizaki, S.: Fuiimoto, H.; Fukui, K. *J. Am. Chem. SOC.* 1976, *98,* 4054-4061:

⁽⁷⁾ Rondan, N. G.; Paddon-Row, M. N.; Caramella, P.; Mareda, **J.;** Mueller, P. H.; Houk, K. N. *J. Am. Chem.* **SOC.** 1982, *104,* 4974-4976.

⁽⁸⁾ Capon, B.; McManus, **S.** P. *Neighboring Group Participation;* Plenum: New York, 1976; Vol. I, Chapter 1.

^{(9) (}a) Winstein, S.; Lindegren, C. R.; Marshall, H.; Ingraham, L. L. *J. Am. Chem.* **SOC.** 1953, 75,147-155. **(b)** Winstein, S.; Trifan, D. J. *Am. Chem. SOC.* 1962, 74, 1147-1154.

⁽¹⁰⁾ Bartlett, P. D. *Nonclassical Ions;* W. **A.** Benjamin: New York, 1965.

that the acetates of alcohols **4a-5b** were unchanged under the conditions of the addition reaction, but α -terpinenyl acetate was found to change to limonene under these conditions. Deuterium content at each position in **4a-5b** was determined by signal integration of $Eu(dpm)_{3}$ -shifted 2H NMR spectra²¹ (Table I). The results are summarized by four features: (i) in endo-directed alcohols **4a** and **5a,** the distributions are simple (for example, in method C, 0.90 deuterium is found at C-6-endo in 4a and 0.90 deuterium is found at C-6-exo in **5a,** both of which are close to unity); (ii) in exo-directed alcohols **4b** and **5b,** the deuterium is found to be scrambled to a much greater extent; (iii) in **5a** a substantial amount of deuterium is located at C-6 endo (0.18); (iv) both endo-directed alcohols, **4a** and **5a,** contain a significant amount of deuterium at the 10-methyl position (0.21 in **4a** and 0.34 in **5a** in procedure C).

Feature iv is illustrated by the 13C *NMR* spectral region containing $C-1$ in $4a$, which reveals the presence of $CH₂D$, CHD2, and CD3 in the 10-methyl group (Figure **5** in the supplementary material).

Addition of Deuteriated Acids to Apopinene and Model Compounds. Apopinene synthesis¹³ by the pyrolysis of α -nopinol (15) or β -nopinol (14) in the presence of **KHS04** was found to give apocyclene and endo-camphenilol (10) as major products.²ⁱ The synthesis from nopinone obtained by ozonolysis of β -pinene followed by a Bamford-Stevens reaction¹⁴ of the nopinone tosylhydrazone in N,N,N',N'-tetramethylethylenediamine¹⁵ gave apopinene (bp 142-143 °C) [lit.¹⁶ bp 140.5 °C], which showed ¹H and ¹³C NMR spectra identical with reported data.³

Addition of CF₃COOD or CF₃COOH to 2 at 0 °C for 40 min, followed by alkaline hydrolysis, gave apoborneol (7), apoisoborneol **(8),** 0-fenchoisocamphorol **(9),** endo-camphenilol (10) , exo -camphenilol (11) , α -santenol (12) , **l,syn-7-dimethylbicyclo[2.2.l]heptan-2-exo-o1(13),** @-nopinol **(14),** unidentified alcohols, and a small amount of unidentified hydrocarbons in the ratio of 18.5%, 12.9%, 43.2%, 0.7%, 2.5%, 5.1%, 2.8%, 1.1%, 6.9% and 6.2%, respectively (60% yield), whose GC analysis is shown in Figure 1 (eq 3). The relative peak areas of **7-11** and **14**

$$
2 - \frac{1}{10H} + \frac{1}{10
$$

remained almost constant for reaction times between **0.5** and **50** min, but peaks due to **12** and **13** showed gradual increases, while unidentified peaks (labeled **as** u in Figure

- 1360, 00, 1-0.

(14) Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 4735-4740.

(15) Stemke, J. E.; Bond, F. T. Tetrahedron Lett. 1975, 1815-1818.

(16) Eschinazi, H. E.; Pines, H. J. Org. Chem. 1959, 24, 1369.

(17) (
	-
-
- 3809-38 12.

Table 11. Deuterium Contents" in Products from Apopinene (2)

position	apoborneol $(7)^{b,c}$	apoiso- borneol (8) ^b	β -fenchoiso- camphorol (9) ⁶
2n	0.000	0.168	0.354
	0.000	0.086	0.404
6x	0.000	0.178	0.118
6n	1.000	0.568	0.124

a Normalized values determined by 30.710-MHz 2H NMR spectroscopy with an accuracy of 0.01²H atom. ^bReaction conditions: in CF_3COOD at 0 °C for 40 min. c Reaction conditions: in [DClO₄ (0.6)-AcOD (66.2)-D₂O (33.2), % w/w] at 105 °C for 40 h.

^aNormalized values determined by 2H NMR spectroscopy. b Obtained at 61.396 MHz with an accuracy of 0.005 2 H atoms. cObtained at 30.710 **MHz** with an accuracy of 0.01 2H atom. ^dReaction conditions: in [DClO₄ (0.6)-AcOD (66.2)-D₂O (33.2), % w/w] at 105 °C for 40 h. e Reaction conditions: in CF₃COOH at 0 "C for 40 min.

1) showed gradual decreases.

Apoborneol (7) , apoisoborneol (8) , and β -fenchoisocamphorol **(9)** from **2** were isolated by silica gel chromatography and identified by agreement **of** the NMR spectral data (Table **V,** supplementary material) with those of authentic samples derived from separate routes **as** described in the experimental section of the supplementary material. The assignments of the alcohols **10-13** were carried out by GC analysis, with authentic samples prepared according to the routes of eq 417 and eq **5.** Alcohol

$$
\frac{1}{15} + \frac{1
$$

13 was differentiated from 12 by the presence of long-range coupling in the 'H NMR spectrum between the C-2-endo proton and the C-7-anti proton $(^4J_{2n,7a} = 1.3 \text{ Hz})$ and between the C-3-endo proton and the $\ddot{\rm C}$ -7-anti proton $({}^4J_{3{\rm n},7{\rm a}}$ = 1.0 **Hz)** (Table **V).**

The structure of the alcohol corresponding to the small GC peak (a in Figure l), which has the same retention time as authentic β -nopinol (14; eq 9), was confirmed by the agreement of its mass fragmentation pattern with that of the authentic alcohol **14** (Figure 6 in the supplementary material). α -Nopinol (15; eq 4) and β -isonopinol (19; eq 9), which have retained configurations, could not be detected in any fractions eluted from silica gel chromatography of the products.

The characteristic deuterium distribution in **7** and **9,** as described in the deuterium incorporation features 1 and **3** below, was found to be unchanged between the early (10 min) and the late (40 min) products from $CF₃COOD$ addition to **2.** The addition of the much more nucleophilic

^{(12) (}a) Hiickel, W.; Kem, H. J. *Justus Liebigs Ann. Chem.* 1965,687, 40-81. **(b)** Musher, J. I. Mol. *Phys.* 1963, 6, 93-100. (c) Tori, K.; Hamashima, Y.; Takamizawa, A. Chem. Pharm. Bull. 1964, 12, 924–937. (d)
Stothers, J. B.; Tan, C. T.; Teo, K. C. Can. J. Chem. 1976, 54, 1211–1221.
(13) Komppa, G.; Hasselstroem, T. Ann. Acad. Sci. Fenn., Ser. A. 1930,30, 1-6.

⁽¹⁹⁾ Berson, J. A.; Walia, J. S.; Remanik, A.; Suzuki, S.; Reynolds-Warnhoff, P.; Willner, D. J. Am. Chem. Soc. 1961, 83, 3986-3997.
(20) Kokke, W. C. M. C.; Varkevisser, F. A. J. Org. Chem. 1974, 39,

⁽²¹⁾ Tidwell, T. T. J. *Am. Chem. SOC.* 1970, 92, 1448-1449. 1653-1656.

Figure 1. Chromatograms of products obtained from CF₃COOH addition to 2, separated on a Carbowax 20 M silica gel capillary column (25 m \times 0.2 mm) at 110 °C; u denotes the peaks of unidentified products; $a \equiv 14$, see Figure 6 in supplementary material.

solvent^{4k,n} (DClO₄ (0.6)-AcOD (66.2)-D₂O (33.2), $\%$ w/w) to **2** was carried out at 105 "C for 40 h, and the deuterium distribution in **7** and **9** was compared with that obtained by CF₃COOD addition (Tables II and III).

In order to characterize the intermediates I, II, III, and IV in Scheme I, which lead to **9** with deuterium substitution at C-2-end0, C-1, C-6-endo, and the C-6-exo positions, respectively, three model compounds, 5,5-dimethyl-2 deuterio-2-norbornene **(16), 7,7-dimethyl-2-deuterio-2** norbornene **(17),** and 3-deuterioapopinene **(18)** were synthesized through pyrolysis of the corresponding xanthates¹⁸ derived from β -fenchocamphorone,^{19,50,51} ketopinic acid,^{18,20} and 3,3-dideuterionopinone,²¹ respectively (eq 6, 7, and 8). The deuterium distribution in 9 from CF₃COOH addition is reported in Table 111.

Deuterium Distribution. The deuterium content in each position of the alcohols 7-9, obtained in CF₃COOD addition to 2, and of the alcohol 9, obtained in CF₃COOH addition to model compounds **16, 17,** and **18,** was determined by integrated signal-intensity measurements of 2H NMR spectra. The results listed in Tables I1 and I11 are characterized by four features: (1) only one deuterium is incorporated at C-6-endo in 7, obtained both from CF₃C-OOD addition or from DC10,-AcOD-D20 addition to **2;** (2) in **8,** obtained from CF3COOD addition to **2,** deuteriums are scrambled to C-6-end0, C-6-exo, 2-endo, and also to $C-1$; (3) in **9**, obtained from CF_3COOD addition to **2**, the fraction of deuterium at C-1 was slightly greater than

4 2 *8%* **Figure 2.** The 30.7-MHz 2H NMR spectra of products obtained from CF,COOD addition to **2:** a, apoborneol **(7)** in CHC1,; b, apoisoborneol **(8)** in CHCl₃ containing Eu(dpm)₃; c, β -fenchoisocamphorol **(9)** in CHCl₃.

that at C-2-endo; (4) opposite results to the above (deuterium at C-l/deuterium at C-2-endo < 1) were observed in the cases of CF_3COOH addition to 16 and $DCIO_4$ -Ac-OD-D20 addition to **2.** Figure 2 shows the 30.7-MHz 2H NMR spectra of 7-9, which were obtained from CF₃COOD addition to **2.** Figure 3 shows the 30.7-MHz 2H NMR spectra of **9** obtained from CF3COOH addition to **16** and DC104-AcOD-D20 addition to **2.** Figure **4** shows the 'H NMR spectrum of 9, obtained from CF₃COOD addition to **2,** which confirmed the ratio (1.1) of the deuterium at C-1 to that at C-2-endo in **9,** shown in Figure 2.

Kinetic Results. In Table IV are listed pseudo-firstorder rate constants for addition of CF₃COOH to 2 and to cyclohexene at 0 "C, which were determined by using $n-C_{10}H_{22}$ as an internal reference in the gas chromatographic analysis of the remaining alkenes in the addition reaction solutions. The rate ratio at 0 °C ($k_{\text{apopinene}}/$ $k_{\text{evcloherene}}$ = 48.4) indicates a moderate rate enhancement for **2.** The relative rate ratio of norbornene vs **2** (13.1) in competitive CF₃COOH addition at 0 °C was determined by the Ingold-Shaw equation,²² and the results were obtained from GC analysis of the remaining alkenes, with

⁽²²⁾ Ingold, C. K.; Shaw, F. R. *J. Chem. SOC.* **1927, 2918-2926.**

Figure 3. The 30.7-MHz ²H NMR spectra of β -fenchoisocamphorol (9) in CHCl₃ addition to 2: a, 9 obtained in CF₃COOH addition to 16 ; b, 9 obtained in DClO₄ (0.6)-AcOD (66.2)-D₂O (33.2), % **w/w.**

Table IV. Kinetic Data" Obtained in Addition Reactions to 2 **and Reference Compounds**

substr	rate constant $\times 10^{5}$ s ⁻¹ reactn condtn ^h rel rate				
2 ^b		149	48.4		
cyclohexene ^c 2 ^d		3.08	1.0		
	в		1.0		
norbornene ^e	B		13.1		
2^f	С		1.0		
cyclohexene ⁸			1.61		

a Obtained by GC analysis with an internal standard compound. ^b Apopinene, 0.142 M; n-C₁₀H₂₂, 0.0353 M. Cyclohexene, 0.0571 $M; n-C_9H_{20}$, 0.0140 M. dApopinene, 0.0110 M; $n-C_{12}H_{26}$, 0.0150 M. **^e**Norbornene, **0.2001** M; n-ClzHzs, 0.0150 M. *f* Apopinene, 0.0873 M; $n-C_{12}H_{26}$, 0.0176 M. ^{*s*} Cyclohexene, 0.552 M; $n-C_{12}H_{26}$, 0.0176 M. h A: CF₃COOH addition at 0 °C. B: Competitive addition of $CF₃COOH$ at 0 °C. C: Competitive addition of $BH₃(CH₃)₂S$ in $CH₂Cl₂$ at 0 °C.

 $n\text{-}C_{12}H_{26}$ as an internal reference (Table IV). The same treatment in competitive hydroboration of cyclohexene and 2 at 0 °C in CH_2Cl_2 yielded the rate ratio of $k_{\text{cyclohexene}}$ $/k_{\text{apopinene}} = 1.61$ (Table IV).

BH3 **Addition to** 2. Hydroboration of 2 with boranedimethyl sulfide complex²³ in n -hexane at room temperature for **4** h and oxidation by alkaline hydroperoxide gave β -isonopinol (19), β -nopinol (14), and α -isonopinol (20) in the ratio of 86:12:2, respectively, as determined by GC analysis (eq 9). Silica gel chromatography of the product

(23) Lane, **C. F.** J. *Org. Chem.* **1974, 39, 1437-1438.**

Figure 4. The 200-MHz ¹H NMR spectrum of β -fenchoisocamphorol (9) in CDCl₃ obtained from CF₃COOD addition to 2.

alcohols gave 19 (mp **47-48** "C) [lit.24 mp **45** "C] and 14 as a glistening soft solid [lit.²⁴ mp ³⁷ °C]. ¹H NMR spectra of both alcohols agreed with the reported data.²⁴ Oxidation of 19 with CrO_3 -pyridine afforded isonopinone, which gave the (2,4-dinitrophenyl)hydrazone (mp 161.5-162 °C) [lit.²⁴ mp $162 °C$]. The above treatment with 14 gave a ketone that showed the same IR spectrum as that of nopinone. Compound 20 was assigned as α -isonopinol from GC analysis, by using an authentic sample prepared from LiAlH4 reduction of isonopinone.

Discussion

Addition to α **-Pinene.** It has been reported that the addition of HCl to α -pinene under special conditions affords a very unstable pinene hydrochloride.^{2a,25a} Recently, the structure of pinene hydrochloride was assigned as 22 by direct ¹³C and ²H NMR spectral analysis of the reaction solution.^{25b} These results, along with the deuterium ac-

cumulation at the 10-methyl position in products in this study (feature iv), suggest the intervention of the tertiary cation intermediate 3a (eq 1). The intermediate 3a is presumably generated both from endo-side and from exo-side deuteration and, in general, undergoes rearrangements to give one of the next intermediates 4-6 by the processes noted earlier or to give β - or α -pinene by H⁺ elimination. As already reported,^{2i-k} the formation of β -pinene, which was observed at the beginning of the reaction of α -pinene, gives supporting evidence for the presence of the intermediate 3a.

The high deuterium content at C-6-endo in 4a and at C-6-exo in 5a (feature i in the endo products) is interpreted to mean that the initial deuteriation occurs from the less hindered endo side to give 3a followed by two kinds of bond migrations, namely, C -6- C -1 leading to 4 and C -7- C -1

⁽²⁴⁾ Baretta, A. J.; Jefford, C. W.; Waegell, **B.** *Bull. SOC. Chim. Fr.* **1970,3985-3993.**

^{(25) (}a) Hughes, E. D. Q. Rev., Chem. Soc. 1951, 5, 245–269. (b)
Weigand, E. F.; Schneider, H.-J. Chem. Ber. 1979, 112, 3031–3033.

Acid-Catalyzed Rearrangements of the Piny1 System

leading to **5.** The formation of 4 and **5** would then be controlled mainly by the migratory aptitudes 26 of C-6 and (3-7, respectively. The contrasting deuterium distribution in exo products 4b and 5b (feature ii) may be understood by postulating a series of steps, including Wagner-Meerwein, Nametkin, 6,2- and 3,2-hydride shifts, and also **H+** elimination and D^+ addition.

The large amount, 0.65, of C-2-endo deuterium in 5b and the absence of any **6-exo-deuterio-1,3,3-trimethylbicyclo-** [2.2.1]heptan-exo-2-01, 6xD-5c, are interesting. The expected products from the intermediate 6xD-5 derived from endo-side addition followed by C-7-C-1 migration are **6-exo-deuterio-a-fenchol,** 6xD-5a, 2-endo-deuterio-a-Sisofenchol, 2nD-5b, and **6-exo-deuterio-1,3,3-trimethylbicyclo[2.2.1]heptan-2-exo-ol,** 6xD-5c, two of which, 6xD-5a and **2nD-5b,** are actually obtained. The absence of 6xD-5c may be due to the high reactivity of the transitory exoacetate, which undergoes solvolysis very rapidly to a tertiary cation intermediate, 6nD-6d, through Wagner-Meerwein rearrangement under the reaction conditions used.

The substantial amount of deuterium at C -6-endo (0.18) in 5a (feature iii) may be rationalized by assuming a concurrent path initiated by exo-side deuteration and assisted by C-7-C-1 bond migration to give 3c, followed by immediate solvent capture.⁴ⁿ This interpretation provides a rationale that the steric hindrance of the syn-9-methyl is compensated by stereoelectronically assisted bond mi $gration.²⁷$

The pathways to all the above products, 4a-5b, particularly 4-deuterioisoborneol (4b in procedure B) are too complex and lengthy to present here and are given in the supplemenary material (Scheme 111).

Addition **to** Apopinene. In protonic acid addition to α -pinene, there ought to be little, if any, need of assistance to stabilize the already very stable tertiary cation intermediates. However, in the apopinene case, there should be a considerable need of assistance in the initial protonation to give secondary cation intermediates.2s

The advantage of using apopinene, compared to α -pinene, is that it has no methyl substituent at C-2, which results in a simple deuterium distribution in the products. This was revealed especially in **7,** which contains one deuterium located only at C-6 endo (feature 1) (Table 11). This significant result was realized in one step by initial endo-side deuteriation at C-3, assisted by C-6-C-1 bond migration, with direct capture of the forming cation by the

Scheme 11. Pathways to Intermediates from 18

counterion located at the endo side. Alternatively, deuteriation could give 3b as an intermediate that leads to **7.** Unassisted protonation at C-3 could also lead to the formation of 14, and the uncaptured free cations formed would all lead to 8 and/or to further rearranged exo derivatives (Scheme I), which have been observed^{2m,4f,29} previously and in this work by CF,COOH addition to 16. Feature 2, the additional deuterium incorporation in 8, particularly at C-1, gives evidence for extensive alternations of Wagner-Meerwein and 6,2-hydride (deuteride) shifts in competition with the capture of each cationic site by the solvent^{12a,30} (Scheme I).

As shown in Scheme I, III and IV are intermediates for deuterium incorporation at C-6-endo and at C-6-exo in **9,** respectively. Consequently, if the initial addition to **2 occurs** only from the endo side, **9** obtained from **2** and from 16 should contain the same amount of deuterium at C-6. However, there is about 3 times as much deuterium incorporation at C-6 in **9** from **2** as from 16 (Table 11, 111), indicating a shorter route to the intermediates I11 and IV from 2, i.e., exo-side deuteration.

From comparison of Schemes I and 11, the ratio (0.7) of deuterium at C-6 in **9** from 2 (Table 111) vs that from 18 (Table IV) represents the approximate ratio of exo-side vs endo-side addition. This follows from the fact that the fraction that leaked through Wagner-Meerwein followed by a 6,Z-shift to the intermediate VI in the case of exo-side D^+ addition to 2 (Scheme I) and the fraction that leaked through a 6,2-shift to the same intermediate VI in the case of endo-side H+ addition to 18 (Scheme 11) are almost equal. The significant amount of hindered exo-side protonation, compared with the result of the hydroboration of **2** (2%), is positive evidence supporting the view that the steric hindrance to exo approach in **2** is compensated by C-7-C-1 assistance in the initial exo-side addition.

About a 100-fold rate acceleration to one reaction site in protonation of **2** compared to cyclohexene is consistent with the formation of 1.1% of unrearranged 14 from **2** by a discrete unassisted pathway.32 The driving forces that accelerate the initial rate-determining protonation^{4g} come

⁽²⁶⁾ (a) Ingold, C. K. Structure *and Mechanism in Organic Chemis*try, 2nd ed.; Cornell University: London, 1969; p 726. (b) Hawthorne, M. F.; Emmons, W. D.; McCallum, K. S. J. Am. Chem. Soc. 1958, 80, 6393-6398. (c) Stiles, M.; Mayer, R. P. *Ibid.* 1959, 81, 1497-1503. (27) Saunders, W

⁽²⁹⁾ Colter, A.; Friedrich, E. C.; Holness, N. J.; Winstein, S. *J. Am. Chem. Soc.* **1965,87,378-379.**

⁽³⁰⁾ (a) Berson, J. A.; McRowe, A. W.; Bergman, R. G. *J. Am. Chem.* SOC. **1967,89,2581-2589.** (b) *Carbonium Zons,* Olah, *G.* A., Schleyer, P. v. R., Eds.; Vol. **2,** Chapter **14** by J. L. Fry and G. J. Karabatsos. *(c)* Brouwer, D. M.; Hogeveen, H. In Progress *in Physical Organic Chem-istry;* Vol. **9,** p **179-240.**

⁽³¹⁾ (a) Yannoni, C. S.; Macho, V.; Myhre, P. C. *J. Am. Chem. SOC.* **1982,104,907-909.** (b) *Zbid.* **1982,104, 7380-7381.** *(e)* Sorensen, T. S. *Acc. Chem. Res.* **1976,** *9,* **257-273.**

R. Schleyer); Plenum: New York, **1977;** p **45. (32)** Brown, *H.* **C.** *The Nonclassical Zon Problem;* (comments by P. **v.**

from either C-6-C-1 or C-7-C-1 migration corresponding to endo-side or exo-side protonation, respectively, with release of strain energy^{25,33} and stereoelectronic control.²⁷ However, the magnitude of rate acceleration is much smaller than the factor of about $10⁵$ observed in acetolysis of the p-bromobenzenesulfonate of $14.17a,34.35$ This discrepancy is not understood at present but one reason could be an unfavorable stereoelectronic alignment in the transition state between the incipient vacant p orbital on C-2 **and** the migrating C-6-C-1 (C-7-C-1) bond. The dihedral angles between these are estimated to be 43° from molecular models, while in the case of acetolysis the angles between the cleaving C -O bond and the migrating C -6- C -1 bond are close to the optimum antiperiplanar orientation (180°) .^{27,36} The rate enhancement for norbornene compared with **2** (Table IV) by a factor of 13.1 may also be explained on the same grounds, i.e., a better (20°) angular orientation of the C-6- \bar{C} -1 assisting bond to the vacant p orbital on C-2.

The slightly greater deuterium content at C-1 rather than at C-2-endo in **9** obtained from CF3COOD addition to **2** (Table 11) is near to the limit of accuracy of area integration in NMR analysis. However, the validity of this result is supported by additional observations that the fraction of deuterium at C-1 and at C-2-endo in 9 obtained from **17** and **18** show the same tendency (Table 111). Furthermore, the deuterium ratio $(C-1/C-2$ -endo = 1.1) in 9 from CF_3COOD addition to **2** was also confirmed both by the smaller amount of proton incorporation at C-1 than at C-2-endo in the lH NMR spectrum (Figure **4)** and by the 13C NMR spectrum of **9** in which the intensity of the C-7 signal coupled with the deuterium at C-1 compared to the intensity of the C-3 signal coupled with the deuterium at C-2-endo was estimated to be in the ratio 1.1. **Isotope Effect on Intermediates.**³⁷

A slight excess of deuterium incorporation at C-1 over C-2-endo has previously been reported for CF_3COOD addition to nortricyclene, 38 (D₂SO₄–CD₃COOD) addition to nortricyclene,³⁹ and for deamination of 2-deuterio-2-exo-(endo)-norbornylamine in $HNO₂$.⁴⁰ Particularly interesting is the finding that the ratio of deuterium incorporation was reversed (0.75 in HC1 to 1.09 in HF) by decreasing the nucleophilic character of X in HX addition to 2,3-dideuterio-2-norbornene.⁴¹ This is the same result as obtained for **2** in this study.

Recently, the size and direction of the secondary deuterium equilibrium isotope effect in 1-(2,3-dimethylcyclopropy1)ethyl cation was measured by **13C** NMR spectral analysis to give 1.11 for K at 25 $\rm{^{\circ}C}$, which favored b due to the small deuterium isotope effect at the γ -position in b compared to that at the α -position in a.⁴² In

- **(33)** Dewar, M. J. S.; Haddon, R. C.; Komomicki, A.; Rzepa, H. J. *Am.* **(34)** Friedrich, E. C.; Winstein, *S. J. Am. Chem. SOC.* **1964, 86,** *Chem. SOC.* **1977,99, 377-385.**
- **2721-2722.**
- (35) Winstein, S.; Holness, N. J. *J. Am. Chem. Soc.* 1955, 77, **3054-3061.**
- **(36)** Lowry, **T.** H.; Richardson, K. S. *Mechanism and Theory in Organic Chemistry,* 2nd Ed.; Harper & Row: New York, **1981;** Chapter **5. (37)** Shiner, **V.** J., Jr. In *Isotope* Effects *in Chemical Reactions;* Col-

lins, C. J., Bowman, N. S., Eds.; van Nostrand Rheinhold: New York, **1970;** Chapter **2.**

- **(38) Liu,** K.-T. *Tetrahedron Lett.* **1978, 1129-1132.**
- **(39)** Werstiuk, N. H.; Dhanoa, D.; Timmins, G. *Can. J. Chem.* **1983, 61, 2403-2411.**
- **(40)** Kirmse, W.; Siegfried, R. J. *Am. Chem. SOC.* **1983,105,950-956. (41)** Stille, **J.** K.; Hughes, R. D. *J. Org. Chem.* **1971, 36, 340-344.**

our case, the equilibrium constant for $([II]/[I])$ would be expected to be very near to the above value (1.11) because the β -deuterium isotope effect in II is presumably very small due to the unfavorable orientation $({\sim}90^{\circ})$ between the bridgehead C-D bond and the vacant p orbital on $C-2$.^{42,43} The observed 1.1 ratio of C-1/C-2-endo deuterium in **9** from **2** may be interpreted as reflecting the true equilibrium between the intermediates I and 11, both of which are captured by solvent with almost equal rates. If this were the actual case, the equilibrium would favor I1 with a free energy difference of about 0.06 kcal/mol, which can be envisioned from the maximum activation energies of 0.2 kcal/mol deduced from the 13C NMR analysis for the interconversion, if it occurs, between the 2-norbornyl cation pair. 31 On the other hand, the opposite results (C-1) \leq C-2-endo) obtained in 9 from 16 in CF₃COOH and from 2 in the much more nucleophilic medium^{4k,n} DClO₄-DO-Ac- D_2O (Table III) indicate capture of the first-formed ion I by the solvent before full equilibration.^{4e, f} In the case of **16,** an alternative explanation based on counterion $control^{44,45}$ is possible, but the formation of 9 from 2 due to the intervention of several 6,2-hydride and Wagner-Meerwein steps before final bond formation is not.

The effects of deuterium substitution at C-1 and C-2 on the kinetics of norbornyl solvolysis have been found to be multiplicative. This indicates a bridged ion structure in the transition state.46 Similarly, isotope effects on the NMR spectra of the norbornyl cation have been interpreted in terms of a bridged intermediate.47 These previous results support the alternative interpretation that our current observation represents the kinetic secondary deuterium isotope effect anticipated in the solvent capture of the bridged intermediate¹⁰ $\mathbf{\dot{R}}$. The final choice between the two interpretations⁴⁸ must await further study.

Experimental Section

Apopinene (2), α -isofenchol (5b), *endo-camphenilol* (10), ero-camphenilol **(1 I),** a-santenol **(E),** l,syn-7,7-dimethylbicyclo^[2.2.1]heptan-2-exo-ol (13), and β -nopinol (14) are all known. **5,5-Dimethyl-2-deuterionorbornene (16),** 7,7-dimethyl-2-deuterio-2-norbornene **(17),** and 3-deuterioapopinene **(18)** are deuterio derivatives of known compounds. Consequently, their preparative procedures and necessary constants (melting and boiling points) **as** well as spectral data (IR, **'H** NMR, and I3C NMR) are described in the supplementary material. Detailed parameters for **'H** and 13C NMR spectra of apoborneol **(7),** apoisoborneol (8), β -fenchoisocamphorol (9), endo-camphenilol **(10), exo-camphenilol (11),** α **-santenol (12), 1,syn-7,7-dimethylbicyclo[2.2.l]heptan-2-exo-o1 (13),** and 6,6-dimethylnorbornan-2-ero-01 **(21)** are presented in the supplementary Table V. In

(43) (a) Scheppele, **S.** E. *Chem. Reu.* **1972, 72,511-532.** (b) Shiner, **V.** J., Jr.; Murr, B. L.; Heinemann, G. *J. Am. Chem. SOC.* **1963,** *85,* **2413-2416.**

(44) (a) Collins, C. J. *Chem. SOC. Reu.* **1976,4, 251-262.** (b) Bly, R. S.; Bly, R. K.; Hamilton, J. B.; Jindal, *S.* P. *J. Am. Chem. SOC.* **1977,99,**

204-216. (45) (a) Nordlander, J. E.; Owuor, P. 0.; Haky, J. E. *J. Am. Chem. SOC.* **1979,101, 1288-1289. (b)** Nordlander, J. E.; Kotian, K. D.; Raff, D. E., 11; Nioroge, F. G.; Winemiller, J. J. *J. Am. Chem. SOC.* **1984,** *106,* **1427-1432.**

(46) (a) Maskill, H. *J. Am. Chem. SOC.* **1976,98,8482-8485.** (b) Ref**erence** 32 **p** 218.

erence 52 p 210.
(47) (a) Saunders, M.; Kates, M. R. J. Am. Chem. Soc. 1980, 102,
6867–6868. (b) Saunders, M.; Kates, M. R.; Walker, G. E. Ibid. 1981, 103,
4623–4624. (c) Saunders, M.; Kates, M. R. Ibid. 1983, 105, 3571–35 (d) Kirchen, R. P.; Ranganayakulu, K.; Rauk, A.; Singh, B. P.; Sorensen, T. S. *Ibid.* 1981, 103, 588–596. (e) Hogeveen, H.; van Kruchten, E. M.
G. A. J. Org. Chem. 1981, 46, 1350–1353.
(48) (a) Grob, C. A. Acc. Chem. Res. 1983, 16, 426–431. (b) Brown, H.
C. *Ibid.* 1983, 16, 432–440. (c) Olah,

-
- *16,* **440-448.** (d) Walling, C. *Ibid.* **1983, 16, 448-454.**
-

⁽⁴²⁾ Siehl, H.-U.; Koch, E.-W. *J. Chem. SOC., Chem. Commun.* **1985, 496-498.**

addition, supplementary material contains Figure **5,** 13C NMR spectra of C-1 regions of borneol **(4a)** obtained from AcOD addition to β -pinene, and Figure 6, the EI mass spectra of authentic β -nopinol (14) and of the product corresponding to the peak labeled a in Figure **1.**

 ${}^{2}H{}_{1}{}^{1}H{}_{1}$ NMR spectra were taken at least three times per sample with a Varian XL-400 or a XL-200 spectrometer at **61.396** or **30.710** MHz in spinning 5-mm cylindrical tubes or 10-mm spherical cells at normal probe temperature. The solvent was CHC1, with CDCl, added as internal reference. The magnetic field was shimmed on an analogue ²H signal from CDCl₃ obtained by connecting the lock cable to the observation port of the probe, after which the instrument was run unlocked. 2H spin-lattice relaxation times (T_1) of 9 were obtained by the inversion-recovery FT method. ²H T_1 values of ²H₁, ²H_{2n}, ²H_{6n}, and ²H_{6x} signals of **9** are **0.6, 0.6,** 0.5, and **0.6** s, respectively. The following 'H('H) FT measurement conditions were used to avoid saturation: spectral width, **1100 (61** MHz), **614 (31** MHz) *Hz,* acquisition time, **2** s; pulse flip angle, **20";** number of transients, **16 (61** MHz), **64 (31** MHz).

Gas chromatographic analyses were performed with a SHI-MADZU Model GC-7AG instrument equipped with a peak area integrator, Chromatopack C-RIB, and the following columns: A, flexible capillary column **(25** m **X 0.2** mm) packed with Carbowax 20M (Hewlett-Packard); B, flexible capillary column **(12.5** m **X 0.3** mm) packed with Carbowax 20M (SHIMADZU); or C, glass column **(3** m **X 3** mm) packed with **OV-17 2%** on Chromosorb P $(80-100 \text{ mesh})$ at N_2 flow of 50 mL/min. Liquid chromatography over silica gel was carried out under medium pressure on a prepacked column, size D (440 **X 37** cm) Lichroprep Si60 **(40-63** μ m), E (310 \times 25 cm), or F (240 \times 10 cm) (LOBAR column Merck). Organic reagents were purchased commercially and used as received.

Trifluoroacetic acid was dried over P_2O_5 and distilled. Trifluoroacetic acid-d was prepared by the method of DePuy et al.⁴⁹ Trifluoroacetic acid-d for NMR spectroscopy (Merck) gave the same results **as** above. n-Pentane was distilled through a silvered vacuum jacketed distilling column **(40 X 1.5** cm) and judged to be pure by GC analysis.

CF,COOH Addition to **2.** To distilled CF,COOH **(17.2** g, **0.151** mol) was added apopinene (1.10 g, 9.0 mmol) at 0 °C with stirring. Stirring was continued for 80 min at 0 "C. The red reaction mixture was poured into ice-water (300 mL) and extracted with n-pentane $(3 \times 100 \text{ mL})$. The combined extracts were washed with $H₂O$ (200 mL), dried (MgSO₄), and concentrated through a **40 X 1.5** cm distilling column to yield an oil (ca. **2** mL), which was saponified by refluxing in a solution of **2** N NaOH **(10** mL) and MeOH **(10 mL)** for **30** min. The reaction mixture was poured into ice-water (100 mL) and extracted with *n*-pentane (3×50) mL). The combined extracts were washed with H_2O , dried (MgSO,), filtered, and concentrated to an oil **(1.4** g) through a 20×1 cm distilling column at 90 °C bath. The oil $(0.7 g)$ was separated into **21** fractions on a LOBAR E column with **4:l** n-pentane/ether and monitored by differential refractometer analysis (Waters Associates **R403).** The purity of each fraction was tested by GC analysis with capillary column A. From the fractions of **13, 17,** and **20** were obtained **8 (22** mg, **0.157** mmol, **1.7%,** mp **130-131°C)** [lit.29 mp **141-142.5** "C], **7 (33** mg, **0.235** mmol, **2.6%,** mp **121-122** "C) [lit.29 mp **131-132** "C], and **9 (52** mg, **0.371** mmol, **4.1%,** mp **56-57** "C) [lit.29 mp **60-61** "C], respectively. IR of **7** (CHCl,): **3600,3500-3150, 2945,2875, 1455, 1386,1370,1335,1285,1265,1145,1120,1096,1070,1035,1003, 940, 860, 820 cm⁻¹. IR of 8 (CHCl₃): 3600, 3500-3200, 2940, 2870,** 1473,1450,1383,1364,1307,1275,1120,1075,1025,990,952,909, **875, 847, 820** cm-'. 'H NMR spectra of **7-9** are listed in Table V of the supplementary material.

To determine the structure of the alcohol obtained in extremely poor yields $(t_R$ 12.59 min), another run $[2 (0.990 g)/CF_3COOH]$ **(35** mL), at **0** "C for **45** min] was carried out to give the alcohol (ca. **1** mg) eluted in the last fraction and contaminated with **15%**

of **9.** The mass spectrum of this alcohol (labeled as a in Figure **1)** showed signals identical with those of authentic **14** (Figure **6,** supplementary material).

The product alcohols from CF₃COOD addition to 2 were purified on **3X** LOBAR E with **5:l** benzene/ethyl acetate and gave good separations with a smaller amount of eluant. Compound **9** for *2H NMR* spectral analysis was obtained from the combined fractions containing **9** to avoid differential elutions between the two species deuteriated at **C-1** and at C-2-endo. Typically, **250** mg of **9 (1.78** mmol, **21.8%,** mp **56-57** "C) was obtained from **1.0** g **(8.18** mmol) of **2.**

CF,COOH Addition to **16.** To a stirred quantity of CF,COOH **(15** mL) was added **16 (150** mg, **1.211** mmol) at **0** "C, and after **40** min, the reaction mixture was worked up as described in the CF3COOH addition to **2.** GC analysis of the concentrated oil **(0.3** g) on column B at 90 "C showed four peaks, **9.13, 9.81, 10.61,** and **11.36** min, with respective area ratios of **1%, 48%, 48%,** and **3%,** Corresponding to an unidentified alcohol, **21,9,** and 8, respectively. Separation of the crude products through **3X** LOBAR F with **5:l** benzene/ethyl acetate gave **21** from early fractions and **9** from late fractions. 'H NMR spectra of **21 (30.7** MHz) showed two signals $[\delta 1.66 (^2H_{3n}), 1.55 (^2H_{7a})]$ with area ratios of 0.55 and 0.45. The 'H NMR spectrum of undeuteriated **21** obtained from **5,5** dimethylnorbornene is shown in Table V.

CF,COOH Addition to **17** and 18. The addition reactions were carried out according to the above procedure, and alcohol **9** was isolated from each of the product alcohols. *2H* NMR spectra of **9** from **17** and 18 are shown in Table **11.**

Kinetics **of** the Addition **of** CF3COOH to Apopinene **(2).** To a stirred quantity of CF,COOH **(1** mL) in a glass-stoppered 16-mL test tube cooled in an ice-water bath was added $8 \mu L$ of the solution of apopinene (50 μ L) and n-C₁₀H₂₂ (25 μ L) through a microsyringe. After **1** min, the reaction mixture was quenched by n-pentane *(5* mL) and cooled in a dry ice/acetone bath, followed by the addition of 5 mL of ice-water. The *n*-pentane extract obtained after shaking the product mixture was washed with **1%** aqueous NaHC0, and was analyzed for remaining apopinene on column C at **40** "C for **4** min and then programmed to **100** "C at **5** "C/min. Under these conditions the retention times of apopinene and $C_{10}H_{22}$ were 8.35 and 10.65 min, respectively. The same analyses were carried out for samples with reaction times of **3,8, 15,** and **25** min. Linear least-squares pseudo-first-order kinetic analysis^{4k} gave a rate constant $k_1 = 1.49 \times 10^{-3}$ s⁻¹, correlation coefficient **0.9963.** In the case of cyclohexene, the same analysis was carried out for samples with reaction times of **30,** 60, 90, 120, and 150 min to give a rate constant $k_1 = 3.08 \times 10^{-5}$ s-l, correlation coefficient **0.9882.**

Competitive Addition **of** CF,COOH to Norbornene and Apopinene. To a stirred quantity of CF,COOH **(2** mL) in a glass-stoppered 16-mL test tube cooled in an ice-water bath was added a portion **(45.4** mg) of the solution of norbornene **(202** mg), apopinene (13.8 mg), and $n-C_{12}H_{26}$ (27.5 mg). After 35 s, the reaction mixture was quenched with n-pentane **(5** mL) and cooled in a dry ice/acetone bath, followed by addition of *5* mL of icewater. The pentane extract obtained after shaking the product mixture was washed with **1%** aqueous NaHCO, and was analyzed by GC for the remaining norbornene and apopinene **as** described above. The ratio $k_{\text{nonborene}}/k_2 = 13.1$ was obtained according to the reported equation.

Competitive Addition of BH_{3} . (CH₃)₂S to Apopinene and Cyclohexene. A $50-\mu L$ sample of the solution of cyclohexene (136 mg) , apopinene (32 mg) , and n - $\text{C}_{12}\text{H}_{26}$ (9.0 mg) in CH_2Cl_2 **(2** mL) was added to n-pentane **(1** mL). This was used as a reference sample. To the residual stirred solution in a glassstoppered 16-mL test tube was added 1 mL of BH_3 . $(CH_3)_2S$ (1 M CHzClz solution) at 0 "C. After being stirred for **180** min, the reaction mixture (50 μ L) was added to the mixture of H₂O (5 mL) and n-pentane **(2** mL) and shaken vigorously. The n-pentane extract was analyzed by GC for the remaining olefins as above to give a relative rate of $k_{\text{cyclohexene}}/k_2 = 1.61$.

Acknowledgment. We are very grateful to Professor Thomas T. Tidwell of University of Toronto for his helpful suggestions in manuscript preparation and to Katsuhiko Kushida of Varian Instruments Ltd. for his contribution in the **2H** NMR measurements.

⁽⁴⁹⁾ DePuy, C. H.; Fiinfschilling, P. C.; Andrist, A. H.; Olson, J. **M.** *J. Am. Chem. SOC.* **1977,99,6297-6303.**

⁽⁵⁰⁾ Mukherji, D.; **Bardhan, J. C.** *J. Chem. SOC.* **1949, 195-197. (51) Beckmann, S.; Bamberger, R.** *Justus Liebigs Ann. Chem.* **1951,** *574.* **65- 75.**

Registry **No. (&)-l, 2437-95-8; (&)-2, 111821-60-4; (&)-4a, 6627-72-1; (** \pm **)-4a** (acetate), **36386-52-4; (** \pm **)-4b, 24393-70-2; (** \pm **)-4b** (acetate), **17283-45-3;** (*)-Sa, **36386-49-9;** (&)-5a (acetate, **111821-74-0; (±)-5b, 111821-62-6; (±)-5b (acetate), 111773-53-6; (f)-7,111821-63-7; (34-7** (ketone), **110012-74-3; (A)-8,111821-648;** *(&)-8-2-endo-d,* **111821-72-8;** *(*)-8-2-endo-d* (methyl xanthate), **111773-51-4; (&)-9, 111821-65-9; (&)-9** (ketone), **111821-71-7; (*)-lo, 111821-66-0; (&)-lo** (p-brosylate), **111773-45-6; (*)-lo** (ketone), 52363-25-4; (±)-11, 111821-67-1; (±)-12, 111821-68-2; **(*)-13,111821-69-3; (A)-14,70223-30-2; (*)-14** (ketone), **30469-** 48-8; (±)-14 (ketone tosylhydrazone), 111773-46-7; (±)-14-3,3- d_2 (ketone), 111821-73-9; (±)-15, 70223-29-9; (±)-15-3,3-d₂, 111793-**88-5; (&)-15-3,3-d2** (methyl xanthate), **111773-52-5; (&)-16, 111773-44-5; (+)-16** (unlabeled), **82764-88-3; (&)-17,111821-61-5; (A)-18, 111793-87-4; 19, 29031-17-2; 19** (ketone), **4722-54-7; 20, 29031-18-3; (&)-21, 111821-70-6;** (&)-a-terpinenyl acetate, **10581-37-0;** (&)-limonene, **7705-14-8;** norbornene, **498-66-8;** cyclohexene, **110-83-8;** (&)-B-pinene, **23089-32-9;** (&)-5,5-di**methyl-2-exo-deuterio-2-endo-norbornano1, 111773-47-8;** (&)- **5,5-dimethyl-2-exo-deuterio-2-endo-norbornyl** methyl xanthate, **111773-48-9; (** \pm **)-deuterioapocyclene, 111773-49-0; (** \pm **)-apocyclene, 111773-50-3.**

Supplementary Material Available: Preparative procedures, necessary constants, and spectral data for **2,5b,** and **10-18;** Table V showing the lH and **I3C** NMR parameters of **7-13** and **21;** Scheme III showing pathways to products from α -pinene; Figure 5 showing 13C NMR spectra of C-1 regions of borneol **(4a);** and Figure 6 showing the EI mass spectra of authentic β -nopinol (14) and of the product corresponding to the peak labeled a in Figure **1 (7** pages). Ordering information is given on any current masthead page.

Fluorinated Phosphoranium Salts: Syntheses and Mechanisms of Formation, Hydrolysis, and Halogenation

Daryl G. Cox¹ and Donald J. Burton*

Department *of* Chemistry, University *of* Iowa, Iowa City, Iowa *52242*

Received February 9, 1987

Triphenylphosphine and/or tri-n-alkylphosphines $(R = Et, Bu, Oc)$ react with fluorotrihalomethanes in a three-to-one ratio to produce fluorinated phosphoranium salts in excellent yields. The solvents utilized exclusively for the preparation of these ylides are methylene chloride, benzonitrile, and o-chlorotoluene. Hydrolysis of the fluorinated phosphoranium salts takes place under mild reaction conditions to produce an equivalent of phosphine oxide and (fluoromethy1)phosphonium salt. Halogenation of the fluorinated phosphoranium salts was shown to be an almost quantitative reaction to produce the corresponding **(dihalofluoromethy1)phosphonium** salt and dihalophosphorane. The mechanism of formation of fluorinated phosphoranium salt is a series of halophilic reactions similar to that of non-fluorine-containing phosphoranium salts. The hydrolysis of phosphoranium salts is explained by attack by hydroxide ion on the most positively charged phosphorus of the newly formed bis phosphonium *sale* the stability of the ejected ylide is secondary to the formation of the strongest phosphorus-oxygen bond. Halogenation occurs by initial abstraction of positive halogen by the fluorinated phosphoranium salt to produce the bis phosphonium salt, followed by attack by halide ion on the phosphonium center, resulting in ejection of the more stable halofluoromethylene ylide.

In 1961 Ramirez² reported the first synthesis of a molecule comprised both the phosphorane and phosphonium moieties. The synthetic sequence began with the phosphoranium salt. The name was coined because the

$$
\substack{[Ph_3P^+-C^-H-P^+Ph_3]Br^-\\1}
$$

preparation of methylene **bis(tripheny1phosphonium** bromide) from **2** mol of triphenylphosphine and 1 mol of methylene bromide. Treatment of the bis phosphonium salt with aqueous sodium carbonate afforded the phosphoranium salt 1. Subsequent to this initial report, the syntheses of a variety **of** phosphoranium salts have appeared in the literature, $3-22$ most of which have been pre-

- **(2)** Ramirez, F.; Desai, N. B.; Hansen, **R.;** McKelvie, N. *J.* Am. Chem. SOC. **1961,83, 3539.**
- **(3)** Driscoll, J. **S.;** Grisley, D. W., Jr.; Pustinger, J. **V.;** Harris, J. E.; Matthews, C. **N.** *J. Org.* Chem. **1964,29, 2427.**
- **(4)** Matthews, C. **N.;** Driscoll, J. S.; Harris, J. E.; Wineman, R. J. *J.* Am. Chem. **SOC. 1962.84.4349.**
- **(5)** Ramirez, **F.;** Pilot,'J. F.; Desai, N. B.; Smith, C. P.; Hansen, B.; **(6)** Birum, G. H.; Matthews, C. N. *J.* Am. Chem. **SOC. 1966,88,4198.** McKelvie, N. *J.* Am. Chem. *SOC.* **1967, 89, 6273.**
-

Introduction Table **I. Solvents** and Solubilities

	solubilities ^a				
	$[Bu3P+-C-F-$ $P^{\dagger}Bu_{3}$]X ⁻				
solvent $(bp, °C)$	CFCI.	CFBr ₂		Bu_3PCl_2 Bu_3PBr_2	
methylene chloride (40)	S(95%)	S(92%)	S	s	
benzonitrile (191)	$S(94\%)$	S(91%)	S	IS	
o-chlorotoluene (158)	S(92%)	$S(91\%)$	S	IS	
acetonitrile (82)	$S(91\%)$	S(93%)	S	IS	
dioxane(101)	$S(90\%)$	S(89%)	S	IS	

⁴¹⁹F NMR yield vs hexafluorobenzene (HFB): S = soluble; IS = insoluble—solid present which is not detected by ³¹P NMR analysis.

pared by the reaction of a tertiary phosphine with a halogenated methane. The general structure of phosphora-

- **(9)** Ramirez, **F.;** McKelvie, N. *J.* Am. Chem. *SOC.* **1957,** *79,* **5829. (10)** Appel, R.; Morbach, W. Synthesis **1977, 699.**
-
- **(11)** Appel, R.; Kleinstuck, R.; Ziehn, K. D.; Knoll, F. Chem. Ber. **1970,** *103,* **3631.**
- **(12)** Appel, R.; Knoll, F.; Michel, W.; Morbach, W.; Wihler, H. D.; **(13)** Appel, R.; Veltmann, H. Tetrahedron Lett. **1977, 399.** Veltmann, H. Chem. Ber. **1976,** *109,* **58.**

⁽¹⁾ Present address: Department of Chemistry, Greenville College, Greenville IL **62246.**

⁽⁷⁾ Ramirez, F.; Desai, N. B.; McKelvie, N. *J.* Am. Chem. **SOC. 1962, 84, 1745.**

⁽⁸⁾ Ramirez, F.; Marcus, R. *J.* Am. Chem. *SOC.* **1962,84, 1312.**